Local Portfolio Handling - In my opinion carrying out a backtest that inflates strategy performance due to unrealistic assumptions is annoying at best and extremely unprofitable at worst! Introducing a local portfolio object that replicates the OANDA calculations means that we can check our internal calculations while carrying out practice trading, which gives us greater confidence when we later use this same portfolio object for backtesting on historical data.
In addition, I've had some comments from people suggesting that they'd like to see more varied order types than the simple Market Order. For carrying out proper HFT strategies against OANDA we are going to need to use Limit Orders. This will probably require a reworking of how the system currently executes trades, but it will allow a much bigger universe of trading strategies to be carried out.
We also apply a concentrated margining requirement to Margin accounts. An account's two largest positions and their underlying derivatives will be re-valued using the worst case scenario within a +/- 30% scanning range. The remaining positions will be re-valued based upon a move of +/-5%. If the concentrated margining requirement exceeds that of the standard rules based margin required, then the newly calculated concentrated margin requirement will be applied to the account.
In particular I would like to make the system a lot faster, since it will allow parameter searches to be carried out in a reasonable time. While Python is a great tool, it's one drawback is that it is relatively slow when compared to C/C++. Hence I will be carrying out a lot of profiling to try and improve the execution speed of both the backtest and the performance calculations.
The "philosophy" of the forex trading system, as with the rest of the QuantStart site, is to try and mimic real-life trading as much as possible in our backtesting. This means including the details that are often excluded from more "research oriented" backtesting situations. Latency, server outages, automation, monitoring, realistic transaction costs will all be included within the models to give us a good idea of how well a strategy is likely to perform.
Maintenance margin for commodities is the amount that you must maintain in your account to support the futures contract and represents the lowest level to which your account can drop before you must deposit additional funds. Commodities positions are marked to market daily, with your account adjusted for any profit or loss that occurs. Because the price of underlying commodities fluctuates, it is possible that the value of the commodity may decline to the point at which your account balance falls below the required maintenance margin. If this happens, brokers typically make a margin call, which means you must deposit additional funds to meet the margin requirement.

If you sell a security short, you must have sufficient equity in your account to cover any fees associated with borrowing the security. If you borrow the security through us, we will borrow the security on your behalf and your account must have sufficient collateral to cover the margin requirements of the short sale. To cover administrative fees and stock borrowing fees, we must post 102% of the value of the security borrowed as collateral with the lender. In instances in which the security shorted is hard to borrow, borrowing fees charged by the lender may be so high (greater than the interest earned) that the short seller must pay additional interest for the privilege of borrowing a security. Customers may view the indicative short stock interest rates for a specific stock through the Short Stock (SLB) Availability tool located in the Tools section of their Account Management page. For more information concerning shorting stocks and associated fees, visit our Stock Shorting page.
×