In particular I would like to make the system a lot faster, since it will allow parameter searches to be carried out in a reasonable time. While Python is a great tool, it's one drawback is that it is relatively slow when compared to C/C++. Hence I will be carrying out a lot of profiling to try and improve the execution speed of both the backtest and the performance calculations.
Trading on a margin can have varying consequences. It can influence your trading experience both positively and negatively, with both profits and losses potentially being seriously augmented. Your broker takes your margin deposit and then pools it with someone else's margin Forex deposits. Brokers do this in order to be able to place trades within the whole interbank network.

Trading on margin is extremely popular among retail Forex traders. It allows you to open a much larger position than your initial trading account would otherwise allow, by allocating only a small portion of your trading account as the margin, or collateral for the trade. Trading on margin also carries certain risks, as both your profits and losses are magnified.

Local Portfolio Handling - In my opinion carrying out a backtest that inflates strategy performance due to unrealistic assumptions is annoying at best and extremely unprofitable at worst! Introducing a local portfolio object that replicates the OANDA calculations means that we can check our internal calculations while carrying out practice trading, which gives us greater confidence when we later use this same portfolio object for backtesting on historical data.