Margin requirements for futures and futures options are established by each exchange through a calculation algorithm known as SPAN margining. SPAN (Standard Portfolio Analysis of Risk) evaluates overall portfolio risk by calculating the worst possible loss that a portfolio of derivative and physical instruments might reasonably incur over a specified time period (typically one trading day.) This is done by computing the gains and losses that the portfolio would incur under different market conditions. The most important part of the SPAN methodology is the SPAN risk array, a set of numeric values that indicate how a particular contract will gain or lose value under various conditions. Each condition is called a risk scenario. The numeric value for each risk scenario represents the gain or loss that that particular contract will experience for a particular combination of price (or underlying price) change, volatility change, and decrease in time to expiration.
Multiple Broker/FIX Integration - At the moment we are strongly coupled to the OANDA broker. As I said this is simply because I came across their API and found it to be a modern offering. There are plenty of other brokers out there, many of which support the FIX protocol. Adding a FIX capability would increase the number of brokers that could be used with the system.
Forex margin is a good faith deposit that a trader puts up as collateral to initiate a trade. Essentially, it is the minimum amount that a trader needs in the trading account to open a new position. This is usually communicated as a percentage of the notional value (trade size) of the forex trade. The difference between the deposit and the full value of the trade is “borrowed” from the broker.

Local Portfolio Handling - In my opinion carrying out a backtest that inflates strategy performance due to unrealistic assumptions is annoying at best and extremely unprofitable at worst! Introducing a local portfolio object that replicates the OANDA calculations means that we can check our internal calculations while carrying out practice trading, which gives us greater confidence when we later use this same portfolio object for backtesting on historical data. 
×