Robust Strategies - I have only demonstrated some simple random signal generating "toy" strategies to date. Now that we are beginning to create a reliable intraday forex trading system, we should start carrying out some more interesting strategies. Future diary entries will concentrate on strategies drawn from a mixture of "technical" indicators/filters as well as time series models and machine learning techniques.
All currency trading is done in pairs. Unlike the stock market, where you can buy or sell a single stock, you have to buy one currency and sell another currency in the forex market. Next, nearly all currencies are priced out to the fourth decimal point. A pip or percentage in point is the smallest increment of trade. One pip typically equals 1/100 of 1 percent.
Trading on margin can be a profitable Forex strategy, but it is important to understand all the possible risks. You should make sure you know how your margin account operates, and be sure to read the margin agreement between you and your selected broker. If there is anything you are unclear about in your agreement, ask questions and make sure everything is clear.

In particular I would like to make the system a lot faster, since it will allow parameter searches to be carried out in a reasonable time. While Python is a great tool, it's one drawback is that it is relatively slow when compared to C/C++. Hence I will be carrying out a lot of profiling to try and improve the execution speed of both the backtest and the performance calculations.
Once an investor has started buying a stock on margin, the NYSE and FINRA require that a minimum amount of equity be maintained in the investor's margin account. These rules require investors to have at least 25% of the total market value of the securities they own in their margin account. This is called the maintenance margin. For market participants identified as pattern day traders, the maintenance margin requirement is a minimum of $25,000 (or 25% of the total market value of the securities, whichever is higher).
So, for an investor who wants to trade $100,000, a 1% margin would mean that $1,000 needs to be deposited into the account. The remaining 99% is provided by the broker. No interest is paid directly on this borrowed amount, but if the investor does not close their position before the delivery date, it will have to be rolled over. In that case, interest may be charged depending on the investor's position (long or short) and the short-term interest rates of the underlying currencies.
For securities, the definition of margin includes three important concepts: the Margin Loan, the Margin Deposit and the Margin Requirement. The Margin Loan is the amount of money that an investor borrows from his broker to buy securities. The Margin Deposit is the amount of equity contributed by the investor toward the purchase of securities in a margin account. The Margin Requirement is the minimum amount that a customer must deposit and it is commonly expressed as a percent of the current market value. The Margin Deposit can be greater than or equal to the Margin Requirement. We can express this as an equation:

In particular I would like to make the system a lot faster, since it will allow parameter searches to be carried out in a reasonable time. While Python is a great tool, it's one drawback is that it is relatively slow when compared to C/C++. Hence I will be carrying out a lot of profiling to try and improve the execution speed of both the backtest and the performance calculations.


Note also that when we begin storing our trades in a relational database (as described above in the roadmap) we will need to make sure we once again use the correct data-type. PostgreSQL and MySQL support a decimal representation. It is vital that we utilise these data-types when we create our database schema, otherwise we will run into rounding errors that are extremely difficult to diagnose!


One of the unique features of TradingDiary Pro which you cannot find in any trading journal software is the options strategy support. TradingDiary Pro is the perfect solution for an options trading journal and tracking your stock and futures options strategies. What is an options strategy? Options strategy is simultaneously buying or selling one or […]

The script is currently hardcoded to generate forex data for the entire month of January 2014. It uses the Python calendar library in order to ascertain business days (although I haven't excluded holidays yet) and then generates a set of files of the form BBBQQQ_YYYYMMDD.csv, where BBBQQQ will be the specified currency pair (e.g. GBPUSD) and YYYYMMDD is the specified date (e.g. 20140112).
There is one unpleasant fact for you to take into consideration about the margin call Forex. You might not even receive the margin call before your positions are liquidated. If the money in your account falls under the margin requirements, your broker will close some or all positions, as we have specified earlier in this article. This can actually help prevent your account from falling into a negative balance.
Note also that when we begin storing our trades in a relational database (as described above in the roadmap) we will need to make sure we once again use the correct data-type. PostgreSQL and MySQL support a decimal representation. It is vital that we utilise these data-types when we create our database schema, otherwise we will run into rounding errors that are extremely difficult to diagnose!
The "philosophy" of the forex trading system, as with the rest of the QuantStart site, is to try and mimic real-life trading as much as possible in our backtesting. This means including the details that are often excluded from more "research oriented" backtesting situations. Latency, server outages, automation, monitoring, realistic transaction costs will all be included within the models to give us a good idea of how well a strategy is likely to perform.
In particular we need to modify -every- value that appears in a Position calculation to a Decimal data-type. This includes the units, exposure, pips, profit and percentage profit. This ensures we are in full control of how rounding issues are handled when dealing with currency representations that have two decimal places of precision. In particular we need to choose the method of rounding. Python supports a few different types, but we are going to go with ROUND_HALF_DOWN, which rounds to the nearest integer with ties going towards zero.
The "philosophy" of the forex trading system, as with the rest of the QuantStart site, is to try and mimic real-life trading as much as possible in our backtesting. This means including the details that are often excluded from more "research oriented" backtesting situations. Latency, server outages, automation, monitoring, realistic transaction costs will all be included within the models to give us a good idea of how well a strategy is likely to perform.
Trading on a margin can have varying consequences. It can influence your trading experience both positively and negatively, with both profits and losses potentially being seriously augmented. Your broker takes your margin deposit and then pools it with someone else's margin Forex deposits. Brokers do this in order to be able to place trades within the whole interbank network.

If you believe that a currency pair such as the Australian dollar will rise against the US Dollar you can place a buy trade on AUD/USD. If the prices rises, you will make a profit for every point that AUD appreciates against the USD. If the market falls, then you will make a loss for every point the price moves against you. Our trading platform tells you in real-time how much profit or loss you are making.
×