In particular I would like to make the system a lot faster, since it will allow parameter searches to be carried out in a reasonable time. While Python is a great tool, it's one drawback is that it is relatively slow when compared to C/C++. Hence I will be carrying out a lot of profiling to try and improve the execution speed of both the backtest and the performance calculations.

Often, closing one losing position will take the margin level Forex higher than 5%, as it will release the margin of that position, so the total used margin will decrease and consequently the margin level will increase. The system often takes the margin level higher than 5%, by closing the biggest position first. If your other losing positions continue losing and the margin level reaches 5% once more, the system will just close another losing position.
Margin requirements for futures and futures options are established by each exchange through a calculation algorithm known as SPAN margining. SPAN (Standard Portfolio Analysis of Risk) evaluates overall portfolio risk by calculating the worst possible loss that a portfolio of derivative and physical instruments might reasonably incur over a specified time period (typically one trading day.) This is done by computing the gains and losses that the portfolio would incur under different market conditions. The most important part of the SPAN methodology is the SPAN risk array, a set of numeric values that indicate how a particular contract will gain or lose value under various conditions. Each condition is called a risk scenario. The numeric value for each risk scenario represents the gain or loss that that particular contract will experience for a particular combination of price (or underlying price) change, volatility change, and decrease in time to expiration.
Imagine that you have $10,000 on your account account, and you have a losing position with a margin evaluated at $1,000. If your position goes against you, and it goes to a $9,000 loss, the equity will be $1,000 (i.e $10,000 - $9,000), which equals the margin. Thus, the margin level will be 100%. Again, if the margin level reaches the rate of 100%, you can't take any new positions, unless the market suddenly turns around and your equity level turns out to be greater than the margin.
Let’s cover this with an example. If you have $1,000 in your trading account and use a leverage of 1:100 you could theoretically open a position size of $100,000. However, by doing so, your entire trading account would be allocated as the required margin for the trade, and even a single price tick against you would lead to a margin call. There would be no free margin to withstand any negative price fluctuation.
Not all securities can be bought on margin. Buying on margin is a double-edged sword that can translate into bigger gains or bigger losses. In volatile markets, investors who borrowed from their brokers may need to provide additional cash if the price of a stock drops too much for those who bought on margin or rallies too much for those who shorted a stock. In such cases, brokers are also allowed to liquidate a position, even without informing the investor. Real-time position monitoring is a crucial tool when buying on margin or shorting a stock.
How can you avoid this unanticipated surprise? Margin calls can be effectively avoided by carefully monitoring your account balance on a regular basis, and by using stop-loss orders on every position to minimise the risk. Another smart action to consider is to implement risk management within your trading. By managing your the potential risks effectively, you will be more aware of them, and you should also be able to anticipate them and potentially avoid them altogether.
In particular I would like to make the system a lot faster, since it will allow parameter searches to be carried out in a reasonable time. While Python is a great tool, it's one drawback is that it is relatively slow when compared to C/C++. Hence I will be carrying out a lot of profiling to try and improve the execution speed of both the backtest and the performance calculations.
A Portfolio Margin account can provide lower margin requirements than a Margin account. However, for a portfolio with concentrated risk, the requirements under Portfolio Margin may be greater than those under Margin, as the true economic risk behind the portfolio may not be adequately accounted for under the static Reg T calculations used for Margin accounts. Customers can compare their current Reg T margin requirements for their portfolio with those current projected under Portfolio Margin rules by clicking the Try PM button from the Account Window in Trader Workstation (demo or customer account).
76% of retail accounts lose money when trading CFDs with this provider. CFDs are complex instruments and come with a high risk of losing money rapidly due to leverage. 76% of retail investor accounts lose money when trading CFDs with this provider. You should consider whether you understand how CFDs work and whether you can afford to take the high risk of losing your money.
GUI Control and Reporting - Right now the system is completely console/command line based. At the very least we will need some basic charting to display backtest results. A more sophisticated system will incorporate summary statistics of trades, strategy-level performance metrics as well as overall portfolio performance. This GUI could be implemented using a cross-platform windowing system such as Qt or Tkinter. It could also be presented using a web-based front-end, utilising a web-framework such as Django.

Now, let’s say you open a trade worth $50,000 with the same trading account size and leverage ratio. Your required margin for this trade would be $500 (1% of your position size), and your free margin would now also amount to $500. In other words, you could withstand a negative price fluctuation of $500 until your free margin falls to zero and causes a margin call. Your position size of $50,000 could only fall to $49,500 – this would be the largest loss your trading account could withstand.
The script is currently hardcoded to generate forex data for the entire month of January 2014. It uses the Python calendar library in order to ascertain business days (although I haven't excluded holidays yet) and then generates a set of files of the form BBBQQQ_YYYYMMDD.csv, where BBBQQQ will be the specified currency pair (e.g. GBPUSD) and YYYYMMDD is the specified date (e.g. 20140112). 

Often, closing one losing position will take the margin level Forex higher than 5%, as it will release the margin of that position, so the total used margin will decrease and consequently the margin level will increase. The system often takes the margin level higher than 5%, by closing the biggest position first. If your other losing positions continue losing and the margin level reaches 5% once more, the system will just close another losing position.
×