If you sell a security short, you must have sufficient equity in your account to cover any fees associated with borrowing the security. If you borrow the security through us, we will borrow the security on your behalf and your account must have sufficient collateral to cover the margin requirements of the short sale. To cover administrative fees and stock borrowing fees, we must post 102% of the value of the security borrowed as collateral with the lender. In instances in which the security shorted is hard to borrow, borrowing fees charged by the lender may be so high (greater than the interest earned) that the short seller must pay additional interest for the privilege of borrowing a security. Customers may view the indicative short stock interest rates for a specific stock through the Short Stock (SLB) Availability tool located in the Tools section of their Account Management page. For more information concerning shorting stocks and associated fees, visit our Stock Shorting page.
Systems that derive risk-based margin requirements deliver adequate assessments of the risk for complex derivative portfolios under small/moderate move scenarios. Such systems are less comprehensive when considering large moves in the price of the underlying stock or future. We have enhanced the basic exchange margin models with algorithms that consider the portfolio impact of larger moves up 30% (or even higher for extremely volatile stocks). This 'Extreme Margin Model' may increase the margin requirement for portfolios with net short options positions, and is particularly sensitive to short positions in far out-of-the-money options.
In a margin account, the broker uses the $1,000 as a security deposit of sorts. If the investor's position worsens and his or her losses approach $1,000, the broker may initiate a margin call. When this occurs, the broker will usually instruct the investor to either deposit more money into the account or to close out the position to limit the risk to both parties.

Local Portfolio Handling - In my opinion carrying out a backtest that inflates strategy performance due to unrealistic assumptions is annoying at best and extremely unprofitable at worst! Introducing a local portfolio object that replicates the OANDA calculations means that we can check our internal calculations while carrying out practice trading, which gives us greater confidence when we later use this same portfolio object for backtesting on historical data.