Have you always dreamed of financial freedom? Maybe you want to start your own business and need a way to supplement the income it brings in. It doesn’t matter what your goals are – Forex trading may be the solution you have been looking for. This high-reward, high-risk market has plenty of opportunities for the patient, insightful investor. You do not need to spend all day researching and watching the market; currency trading only requires you to dedicate a small portion of each day to it, leaving you with more time to spend following your dreams!

You could ask yourself, why wouldn’t you use the highest leverage ratio available in order to decrease your margin requirements and get an extremely high market exposure? The answer is rather simple and deals with Forex risk management. While leverage magnifies your potential profits, it also magnifies your potential losses. Trading on high leverage increases your risk in trading.
In particular I would like to make the system a lot faster, since it will allow parameter searches to be carried out in a reasonable time. While Python is a great tool, it's one drawback is that it is relatively slow when compared to C/C++. Hence I will be carrying out a lot of profiling to try and improve the execution speed of both the backtest and the performance calculations.

The majority of the volume in currency trading is confined to only 18 currency pairs compared to the thousands of stocks that are available in the global equity markets. Although there are other traded pairs outside of the 18, the eight currencies most often traded are the U.S. dollar (USD), Canadian dollar (CAD), euro (EUR), British pound (GBP), Swiss franc (CHF), New Zealand dollar (NZD), Australian dollar (AUD) and the Japanese yen (JPY). Although nobody would say that currency trading is easy, having far fewer trading options makes trade and portfolio management an easier task.
Trading on margin is extremely popular among retail Forex traders. It allows you to open a much larger position than your initial trading account would otherwise allow, by allocating only a small portion of your trading account as the margin, or collateral for the trade. Trading on margin also carries certain risks, as both your profits and losses are magnified.
To get started, investors interested in trading in the forex markets must first sign up with either a regular broker or an online forex discount broker. Once an investor finds a proper broker, a margin account must be set up. A forex margin account is very similar to an equities margin account – the investor is taking a short-term loan from the broker. The loan is equal to the amount of leverage taken on by the investor.
Robust Strategies - I have only demonstrated some simple random signal generating "toy" strategies to date. Now that we are beginning to create a reliable intraday forex trading system, we should start carrying out some more interesting strategies. Future diary entries will concentrate on strategies drawn from a mixture of "technical" indicators/filters as well as time series models and machine learning techniques.
In particular I would like to make the system a lot faster, since it will allow parameter searches to be carried out in a reasonable time. While Python is a great tool, it's one drawback is that it is relatively slow when compared to C/C++. Hence I will be carrying out a lot of profiling to try and improve the execution speed of both the backtest and the performance calculations.
For those of you who are new to source version control you will probably want to read up on how git (and version control in general) works with the fantastic free ebook Pro Git. It is worth spending some time learning about source control as it will save you a huge amount of future headache if you spend a lot of time programming and updating projects!
In particular we will need strategy level metrics, including common risk/reward ratios such as the Sharpe Ratio, Information Ratio and Sortino Ratio. We will also need drawdown statistics including the distribution of the drawdowns, as well as descriptive stats such as maximum drawdown. Other useful metrics include the Compound Annual Growth Rate (CAGR) and total return.

Local Portfolio Handling - In my opinion carrying out a backtest that inflates strategy performance due to unrealistic assumptions is annoying at best and extremely unprofitable at worst! Introducing a local portfolio object that replicates the OANDA calculations means that we can check our internal calculations while carrying out practice trading, which gives us greater confidence when we later use this same portfolio object for backtesting on historical data.
×