Now, let’s say you open a trade worth $50,000 with the same trading account size and leverage ratio. Your required margin for this trade would be $500 (1% of your position size), and your free margin would now also amount to $500. In other words, you could withstand a negative price fluctuation of $500 until your free margin falls to zero and causes a margin call. Your position size of $50,000 could only fall to $49,500 – this would be the largest loss your trading account could withstand.
The script is currently hardcoded to generate forex data for the entire month of January 2014. It uses the Python calendar library in order to ascertain business days (although I haven't excluded holidays yet) and then generates a set of files of the form BBBQQQ_YYYYMMDD.csv, where BBBQQQ will be the specified currency pair (e.g. GBPUSD) and YYYYMMDD is the specified date (e.g. 20140112).
The Federal Reserve Board and self-regulatory organizations (SROs), such as the New York Stock Exchange and FINRA, have clear rules regarding margin trading. In the United States, the Fed's Regulation T allows investors to borrow up to 50 percent of the price of the securities to be purchased on margin. The percentage of the purchase price of securities that an investor must pay for is called the initial margin. To buy securities on margin, the investor must first deposit enough cash or eligible securities with a broker to meet the initial margin requirement for that purchase.
In addition, I've had some comments from people suggesting that they'd like to see more varied order types than the simple Market Order. For carrying out proper HFT strategies against OANDA we are going to need to use Limit Orders. This will probably require a reworking of how the system currently executes trades, but it will allow a much bigger universe of trading strategies to be carried out.

In particular I would like to make the system a lot faster, since it will allow parameter searches to be carried out in a reasonable time. While Python is a great tool, it's one drawback is that it is relatively slow when compared to C/C++. Hence I will be carrying out a lot of profiling to try and improve the execution speed of both the backtest and the performance calculations.
Retail or beginning traders often trade currency in micro lots, because one pip in a micro lot represents only a 10-cent move in the price. This makes losses easier to manage if a trade doesn't produce the intended results. In a mini lot, one pip equals $1 and that same one pip in a standard lot equals $10. Some currencies move as much as 100 pips or more in a single trading session making the potential losses to the small investor much more manageable by trading in micro or mini lots.
Margin calls are mechanisms put in place by your Forex broker in order to keep your used margin secure. Remember, your used margin is allocated by your broker as the collateral for funds borrowed from your broker. A margin call happens when your free margin falls to zero, and all you have left in your trading account is your used, or required margin. When this happens, your broker will automatically close all open positions at current market rates.

Risk warning: Trading Forex (foreign exchange) or CFDs (contracts for difference) on margin carries a high level of risk and may not be suitable for all investors. There is a possibility that you may sustain a loss equal to or greater than your entire investment. Therefore, you should not invest or risk money that you cannot afford to lose. Before using Admiral Markets UK Ltd, Admiral Markets Cyprus Ltd or Admiral Markets PTY Ltd services, please acknowledge all of the risks associated with trading.

In particular we will need strategy level metrics, including common risk/reward ratios such as the Sharpe Ratio, Information Ratio and Sortino Ratio. We will also need drawdown statistics including the distribution of the drawdowns, as well as descriptive stats such as maximum drawdown. Other useful metrics include the Compound Annual Growth Rate (CAGR) and total return.


In particular I've made the interface for beginning a new backtest a lot simpler by encapsulating a lot of the "boilerplate" code into a new Backtest class. I've also modified the system to be fully workable with multiple currency pairs. In this article I'll describe the new interface and show the usual Moving Average Crossover example on both GBP/USD and EUR/USD.
The "philosophy" of the forex trading system, as with the rest of the QuantStart site, is to try and mimic real-life trading as much as possible in our backtesting. This means including the details that are often excluded from more "research oriented" backtesting situations. Latency, server outages, automation, monitoring, realistic transaction costs will all be included within the models to give us a good idea of how well a strategy is likely to perform.

Forex margin is a good faith deposit that a trader puts up as collateral to initiate a trade. Essentially, it is the minimum amount that a trader needs in the trading account to open a new position. This is usually communicated as a percentage of the notional value (trade size) of the forex trade. The difference between the deposit and the full value of the trade is “borrowed” from the broker.
In particular I would like to make the system a lot faster, since it will allow parameter searches to be carried out in a reasonable time. While Python is a great tool, it's one drawback is that it is relatively slow when compared to C/C++. Hence I will be carrying out a lot of profiling to try and improve the execution speed of both the backtest and the performance calculations.
Borrowing money to purchase securities is known as "buying on margin". When an investor borrows money from his broker to buy a stock, he must open a margin account with his broker, sign a related agreement and abide by the broker's margin requirements. The loan in the account is collateralized by investor's securities and cash. If the value of the stock drops too much, the investor must deposit more cash in his account, or sell a portion of the stock.
Why should you use Learn to Trade to learn Forex trading? That’s simple: we are a credible, well-established organisation that exists to educate people on Forex trading strategies. Our Forex trading training is second to none and will give you the foundation you need to achieve success in the high-opportunity world of currency trading. Every course is supported by our knowledgeable team of experts, who guide and support you throughout your learning experience. Not only that – you’ll get to take advantage of our live trading floor to get some hands-on experience. Getting a feel for what it’s like, while you have experienced traders around to help you, is a valuable opportunity that will help you get the confidence you need. Register now for your Forex trading tutorial and workshop!
As you may now come to understand, FX margins are one of the key aspects of Forex trading that must not be overlooked, as they can potentially lead to unpleasant outcomes. In order to avoid them, you should understand the theory concerning margins, margin levels and margin calls, and apply your trading experience to create a viable Forex strategy. Indeed a well developed approach will undoubtedly lead you to trading success in the end.
Equity – Your equity is simply the total amount of funds you have in your trading account. Your equity will change and float each time you open a new trading position, in such a way that all your unrealised profits and losses will be added to or deducted from your total equity. For example, if your trading account size is $1,000 and your open positions are $50 in profit, your equity will amount to $1,050.

I post this to let you know, as the title mentions it, that I made a trading diary, with google documents tool. This a generic spreadsheet which allows any trader to manage his trading (his risk, his pnl, his opened position, the orders...) with a trding diary. Every trader,should have one, and I mad mine with google docs. At least you must have an account to acces this spreadsheet.
×