If you believe that a currency pair such as the Australian dollar will rise against the US Dollar you can place a buy trade on AUD/USD. If the prices rises, you will make a profit for every point that AUD appreciates against the USD. If the market falls, then you will make a loss for every point the price moves against you. Our trading platform tells you in real-time how much profit or loss you are making.

To date, we've been experimenting with the OANDA Rest API in order to see how it compared to the API provided by Interactive Brokers. We've also seen how to add in a basic portfolio replication element as the first step towards a proper event-driven backtesting system. I've also had some helpful comments on both previous articles (#1 and #2), which suggests that many of you are keen on changing and extending the code yourselves.
An extremely important requested feature for QSForex has been the ability to backtest over multiple days. Previously the system only supported backtesting via a single file. This was not a scalable solution as such a file must be read into memory and subsequently into a Pandas DataFrame. While the tick data files produced are not huge (roughly 3.5Mb each), they do add up quickly if we consider multiple pairs over periods of months or more.
Local Portfolio Handling - In my opinion carrying out a backtest that inflates strategy performance due to unrealistic assumptions is annoying at best and extremely unprofitable at worst! Introducing a local portfolio object that replicates the OANDA calculations means that we can check our internal calculations while carrying out practice trading, which gives us greater confidence when we later use this same portfolio object for backtesting on historical data.
×