If you believe that a currency pair such as the Australian dollar will rise against the US Dollar you can place a buy trade on AUD/USD. If the prices rises, you will make a profit for every point that AUD appreciates against the USD. If the market falls, then you will make a loss for every point the price moves against you. Our trading platform tells you in real-time how much profit or loss you are making.
Multiple Broker/FIX Integration - At the moment we are strongly coupled to the OANDA broker. As I said this is simply because I came across their API and found it to be a modern offering. There are plenty of other brokers out there, many of which support the FIX protocol. Adding a FIX capability would increase the number of brokers that could be used with the system.
If traders are positive on the prospects for the Yen, they would expect the number on the right to go down – i.e. the Yen would be getting stronger against the Dollar. Traders would be buying less Yen with a Dollar as the Yen got stronger. Similarly, if the Yen was expected to weaken, forex traders would expect the Yen number to go up, reflecting the fact that the dollar could buy more yen.

Robust Strategies - I have only demonstrated some simple random signal generating "toy" strategies to date. Now that we are beginning to create a reliable intraday forex trading system, we should start carrying out some more interesting strategies. Future diary entries will concentrate on strategies drawn from a mixture of "technical" indicators/filters as well as time series models and machine learning techniques.
In addition, I've had some comments from people suggesting that they'd like to see more varied order types than the simple Market Order. For carrying out proper HFT strategies against OANDA we are going to need to use Limit Orders. This will probably require a reworking of how the system currently executes trades, but it will allow a much bigger universe of trading strategies to be carried out.
In particular I would like to make the system a lot faster, since it will allow parameter searches to be carried out in a reasonable time. While Python is a great tool, it's one drawback is that it is relatively slow when compared to C/C++. Hence I will be carrying out a lot of profiling to try and improve the execution speed of both the backtest and the performance calculations.

76% of retail accounts lose money when trading CFDs with this provider. CFDs are complex instruments and come with a high risk of losing money rapidly due to leverage. 76% of retail investor accounts lose money when trading CFDs with this provider. You should consider whether you understand how CFDs work and whether you can afford to take the high risk of losing your money.
Local Portfolio Handling - In my opinion carrying out a backtest that inflates strategy performance due to unrealistic assumptions is annoying at best and extremely unprofitable at worst! Introducing a local portfolio object that replicates the OANDA calculations means that we can check our internal calculations while carrying out practice trading, which gives us greater confidence when we later use this same portfolio object for backtesting on historical data.
×