Popular leverage ratios in Forex trading include 1:10, 1:50, 1:100, 1:200, or even higher. Simply put, the leverage ratio determines the position size you’re allowed to take based on the size of your trading account. For example, a 1:100 leverage allows you to open a position 10 times higher than your trading account size, i.e., if you have $1,000 in your account, you can open a position worth $10,000. Similarly, a  leverage ratio of 1:100 allows you to open a position size 100 times larger than your trading account size. With $1,000 in your trading account, you could open a position worth $100,000!


Unit Tests for Position/Portfolio - While I've not mentioned it directly in diary entries #1 and #2, I've actually been writing some unit tests for the Portfolio and Position objects. Since these are so crucial to the calculations of the strategy, one must be extremely confident that they perform as expected. An additional benefit of such tests is that they allow the underlying calculation to be modified, such that if all tests still pass, we can be confident that the overall system will continue to behave as expected.
Let's presume that the market keeps on going against you. In this case, the broker will simply have no choice but to shut down all your losing positions. This limit is referred to as a stop out level. For example, when the stop out level is established at 5% by a broker, the trading platform will start closing your losing positions automatically if your margin level reaches 5%. It is important to note that it starts closing from the biggest losing position.
Now, let’s say you open a trade worth $50,000 with the same trading account size and leverage ratio. Your required margin for this trade would be $500 (1% of your position size), and your free margin would now also amount to $500. In other words, you could withstand a negative price fluctuation of $500 until your free margin falls to zero and causes a margin call. Your position size of $50,000 could only fall to $49,500 – this would be the largest loss your trading account could withstand.
You could ask yourself, why wouldn’t you use the highest leverage ratio available in order to decrease your margin requirements and get an extremely high market exposure? The answer is rather simple and deals with Forex risk management. While leverage magnifies your potential profits, it also magnifies your potential losses. Trading on high leverage increases your risk in trading.
If you believe that a currency pair such as the Australian dollar will rise against the US Dollar you can place a buy trade on AUD/USD. If the prices rises, you will make a profit for every point that AUD appreciates against the USD. If the market falls, then you will make a loss for every point the price moves against you. Our trading platform tells you in real-time how much profit or loss you are making.
In particular I've made the interface for beginning a new backtest a lot simpler by encapsulating a lot of the "boilerplate" code into a new Backtest class. I've also modified the system to be fully workable with multiple currency pairs. In this article I'll describe the new interface and show the usual Moving Average Crossover example on both GBP/USD and EUR/USD.
We also apply a concentrated margining requirement to Margin accounts. An account's two largest positions and their underlying derivatives will be re-valued using the worst case scenario within a +/- 30% scanning range. The remaining positions will be re-valued based upon a move of +/-5%. If the concentrated margining requirement exceeds that of the standard rules based margin required, then the newly calculated concentrated margin requirement will be applied to the account.
Local Portfolio Handling - In my opinion carrying out a backtest that inflates strategy performance due to unrealistic assumptions is annoying at best and extremely unprofitable at worst! Introducing a local portfolio object that replicates the OANDA calculations means that we can check our internal calculations while carrying out practice trading, which gives us greater confidence when we later use this same portfolio object for backtesting on historical data.
In particular we need to modify -every- value that appears in a Position calculation to a Decimal data-type. This includes the units, exposure, pips, profit and percentage profit. This ensures we are in full control of how rounding issues are handled when dealing with currency representations that have two decimal places of precision. In particular we need to choose the method of rounding. Python supports a few different types, but we are going to go with ROUND_HALF_DOWN, which rounds to the nearest integer with ties going towards zero.
All currency trading is done in pairs. Unlike the stock market, where you can buy or sell a single stock, you have to buy one currency and sell another currency in the forex market. Next, nearly all currencies are priced out to the fourth decimal point. A pip or percentage in point is the smallest increment of trade. One pip typically equals 1/100 of 1 percent.
×