So, for an investor who wants to trade $100,000, a 1% margin would mean that $1,000 needs to be deposited into the account. The remaining 99% is provided by the broker. No interest is paid directly on this borrowed amount, but if the investor does not close their position before the delivery date, it will have to be rolled over. In that case, interest may be charged depending on the investor's position (long or short) and the short-term interest rates of the underlying currencies.
Now, let’s say you open a trade worth $50,000 with the same trading account size and leverage ratio. Your required margin for this trade would be $500 (1% of your position size), and your free margin would now also amount to $500. In other words, you could withstand a negative price fluctuation of $500 until your free margin falls to zero and causes a margin call. Your position size of $50,000 could only fall to $49,500 – this would be the largest loss your trading account could withstand.
Often, closing one losing position will take the margin level Forex higher than 5%, as it will release the margin of that position, so the total used margin will decrease and consequently the margin level will increase. The system often takes the margin level higher than 5%, by closing the biggest position first. If your other losing positions continue losing and the margin level reaches 5% once more, the system will just close another losing position.
Not all securities can be bought on margin. Buying on margin is a double-edged sword that can translate into bigger gains or bigger losses. In volatile markets, investors who borrowed from their brokers may need to provide additional cash if the price of a stock drops too much for those who bought on margin or rallies too much for those who shorted a stock. In such cases, brokers are also allowed to liquidate a position, even without informing the investor. Real-time position monitoring is a crucial tool when buying on margin or shorting a stock.

Local Portfolio Handling - In my opinion carrying out a backtest that inflates strategy performance due to unrealistic assumptions is annoying at best and extremely unprofitable at worst! Introducing a local portfolio object that replicates the OANDA calculations means that we can check our internal calculations while carrying out practice trading, which gives us greater confidence when we later use this same portfolio object for backtesting on historical data.