The script is currently hardcoded to generate forex data for the entire month of January 2014. It uses the Python calendar library in order to ascertain business days (although I haven't excluded holidays yet) and then generates a set of files of the form BBBQQQ_YYYYMMDD.csv, where BBBQQQ will be the specified currency pair (e.g. GBPUSD) and YYYYMMDD is the specified date (e.g. 20140112).
An extremely important requested feature for QSForex has been the ability to backtest over multiple days. Previously the system only supported backtesting via a single file. This was not a scalable solution as such a file must be read into memory and subsequently into a Pandas DataFrame. While the tick data files produced are not huge (roughly 3.5Mb each), they do add up quickly if we consider multiple pairs over periods of months or more.
Now, let’s say you open a trade worth $50,000 with the same trading account size and leverage ratio. Your required margin for this trade would be $500 (1% of your position size), and your free margin would now also amount to $500. In other words, you could withstand a negative price fluctuation of $500 until your free margin falls to zero and causes a margin call. Your position size of $50,000 could only fall to $49,500 – this would be the largest loss your trading account could withstand.
Trading on margin refers to trading on money borrowed from your broker in order to substantially increase your market exposure. When opening a margin trade, your broker lends you a certain sum of money depending on the leverage ratio used, and allocates a small portion of your trading account as the collateral, or margin for that trade. The remaining funds in your trading account will act as your free margin, which can be used to withstand negative price fluctuations from your existing leveraged positions, or to open new leveraged trades. The relation between your free margin and other important elements of your trading account, such as your balance and equity, will be explained later. For now, it’s important to understand the meaning of margin in Forex.
76% of retail accounts lose money when trading CFDs with this provider. CFDs are complex instruments and come with a high risk of losing money rapidly due to leverage. 76% of retail investor accounts lose money when trading CFDs with this provider. You should consider whether you understand how CFDs work and whether you can afford to take the high risk of losing your money.
The "philosophy" of the forex trading system, as with the rest of the QuantStart site, is to try and mimic real-life trading as much as possible in our backtesting. This means including the details that are often excluded from more "research oriented" backtesting situations. Latency, server outages, automation, monitoring, realistic transaction costs will all be included within the models to give us a good idea of how well a strategy is likely to perform.

This article will address several questions pertaining to Margin within Forex trading, such as: What is Margin? What is free margin in Forex?' and What is Margin level in Forex? Every broker has differing margin requirements and offers different things to traders, so it's good to understand how this works first, before you choose a broker and begin trading with a margin.
You could ask yourself, why wouldn’t you use the highest leverage ratio available in order to decrease your margin requirements and get an extremely high market exposure? The answer is rather simple and deals with Forex risk management. While leverage magnifies your potential profits, it also magnifies your potential losses. Trading on high leverage increases your risk in trading.
Local Portfolio Handling - In my opinion carrying out a backtest that inflates strategy performance due to unrealistic assumptions is annoying at best and extremely unprofitable at worst! Introducing a local portfolio object that replicates the OANDA calculations means that we can check our internal calculations while carrying out practice trading, which gives us greater confidence when we later use this same portfolio object for backtesting on historical data.