The market values/prices used to compute the equity or margin requirement in an Interactive account may differ from the price disseminated by exchanges or other market data sources, and may represent Interactive's valuation of the product. Among other things, Interactive may calculate its own index values, Exchange Traded Fund values or derivatives values, and Interactive may value securities or futures or other investment products based on bid price, offer price, last sale price, midpoint or using some other method. Interactive may use a valuation methodology that is more conservative than the marketplace as a whole.
All currency trading is done in pairs. Unlike the stock market, where you can buy or sell a single stock, you have to buy one currency and sell another currency in the forex market. Next, nearly all currencies are priced out to the fourth decimal point. A pip or percentage in point is the smallest increment of trade. One pip typically equals 1/100 of 1 percent.
In particular we need to modify -every- value that appears in a Position calculation to a Decimal data-type. This includes the units, exposure, pips, profit and percentage profit. This ensures we are in full control of how rounding issues are handled when dealing with currency representations that have two decimal places of precision. In particular we need to choose the method of rounding. Python supports a few different types, but we are going to go with ROUND_HALF_DOWN, which rounds to the nearest integer with ties going towards zero.
The market then wants to trigger one of your pending orders but you may not have enough Forex free margin in your account. That pending order will either not be triggered or will be cancelled automatically. This can cause some traders to think that their broker failed to carry out their orders. Of course in this instance, this just isn't true. It's simply because the trader didn't have enough free margin in their trading account.
Margin requirements for futures and futures options are established by each exchange through a calculation algorithm known as SPAN margining. SPAN (Standard Portfolio Analysis of Risk) evaluates overall portfolio risk by calculating the worst possible loss that a portfolio of derivative and physical instruments might reasonably incur over a specified time period (typically one trading day.) This is done by computing the gains and losses that the portfolio would incur under different market conditions. The most important part of the SPAN methodology is the SPAN risk array, a set of numeric values that indicate how a particular contract will gain or lose value under various conditions. Each condition is called a risk scenario. The numeric value for each risk scenario represents the gain or loss that that particular contract will experience for a particular combination of price (or underlying price) change, volatility change, and decrease in time to expiration.
Let's presume that the market keeps on going against you. In this case, the broker will simply have no choice but to shut down all your losing positions. This limit is referred to as a stop out level. For example, when the stop out level is established at 5% by a broker, the trading platform will start closing your losing positions automatically if your margin level reaches 5%. It is important to note that it starts closing from the biggest losing position.

Once an investor has started buying a stock on margin, the NYSE and FINRA require that a minimum amount of equity be maintained in the investor's margin account. These rules require investors to have at least 25% of the total market value of the securities they own in their margin account. This is called the maintenance margin. For market participants identified as pattern day traders, the maintenance margin requirement is a minimum of $25,000 (or 25% of the total market value of the securities, whichever is higher).
If you believe that a currency pair such as the Australian dollar will rise against the US Dollar you can place a buy trade on AUD/USD. If the prices rises, you will make a profit for every point that AUD appreciates against the USD. If the market falls, then you will make a loss for every point the price moves against you. Our trading platform tells you in real-time how much profit or loss you are making.
The market then wants to trigger one of your pending orders but you may not have enough Forex free margin in your account. That pending order will either not be triggered or will be cancelled automatically. This can cause some traders to think that their broker failed to carry out their orders. Of course in this instance, this just isn't true. It's simply because the trader didn't have enough free margin in their trading account.
In particular I've made the interface for beginning a new backtest a lot simpler by encapsulating a lot of the "boilerplate" code into a new Backtest class. I've also modified the system to be fully workable with multiple currency pairs. In this article I'll describe the new interface and show the usual Moving Average Crossover example on both GBP/USD and EUR/USD.
Systems that derive risk-based margin requirements deliver adequate assessments of the risk for complex derivative portfolios under small/moderate move scenarios. Such systems are less comprehensive when considering large moves in the price of the underlying stock or future. We have enhanced the basic exchange margin models with algorithms that consider the portfolio impact of larger moves up 30% (or even higher for extremely volatile stocks). This 'Extreme Margin Model' may increase the margin requirement for portfolios with net short options positions, and is particularly sensitive to short positions in far out-of-the-money options.

Note also that when we begin storing our trades in a relational database (as described above in the roadmap) we will need to make sure we once again use the correct data-type. PostgreSQL and MySQL support a decimal representation. It is vital that we utilise these data-types when we create our database schema, otherwise we will run into rounding errors that are extremely difficult to diagnose!


Trading on margin is extremely popular among retail Forex traders. It allows you to open a much larger position than your initial trading account would otherwise allow, by allocating only a small portion of your trading account as the margin, or collateral for the trade. Trading on margin also carries certain risks, as both your profits and losses are magnified.
Local Portfolio Handling - In my opinion carrying out a backtest that inflates strategy performance due to unrealistic assumptions is annoying at best and extremely unprofitable at worst! Introducing a local portfolio object that replicates the OANDA calculations means that we can check our internal calculations while carrying out practice trading, which gives us greater confidence when we later use this same portfolio object for backtesting on historical data.
×